Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 341: 125799, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34425465

RESUMO

l-glutamine is a semi-essential amino acid widely used in the food and pharmaceutical industries. The microbial synthesis of l-glutamine is limited by lack of effective strains with high titer and safety. First, ARTP mutagenesis combined with high-throughput screening generated an l-glutamine-producing strain of Corynebacterium glutamicum with titer of 25.7 ± 2.7 g/L. Subsequently, a series of rational metabolic approaches were used to further improve l-glutamine production, which included increasing the carbon flow to l-glutamine (proB and NCgl1221 knockout), enhancing the catalytic efficiency of the key enzyme (glnE knockout and glnA screening and overexpression) and reinforcement of ATP regeneration (ppk overexpression and RBS optimization). Finally, we proposed a two-stage pH control strategy to address the inconsistent effect of pH on cell growth and l-glutamine production. These combined strategies led to a 186.0% increase of l-glutamine titer compared to that of the initial strain, reaching 73.5 ± 3.1 g/L with a yield of 0.368 ± 0.034 g/g glucose.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Fermentação , Glucose , Glutamina , Concentração de Íons de Hidrogênio , Engenharia Metabólica
2.
Int J Biol Macromol ; 179: 71-79, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631263

RESUMO

l-lactate dehydrogenases (LDHs) has been widely studied for their ability to reduce 2-keto acids for the production of 2-hydroxy acids, whereby 2-hydroxybutyric acids (2-HBA) is among the most important fundamental building blocks for synthesizing pharmaceuticals and biodegradable materials. However, LDHs usually show low activity towards 2-keto acids with longer side chain such as 2-oxobutyric acid (2-OBA). Here rational engineering of the Plasmodium falciparum LDH loop with residue involved in the catalytic proton transfer was initially studied. By combining homology alignment and structure-based design approach, we found that changing the charge characteristics or hydrogen bond network interactions of this loop could improve enzymatic catalytic activities and stabilities towards 2-OBA. Compared with wild type, variant N197Dldh showed 1.15 times higher activity and 2.73 times higher Kcat/Km. The half-life of variant N197Dldh at 40 °C increased to 77.9 h compared with 50.4 h of wild type. Furthermore, asymmetric synthesis of (S)-2-HBA with coenzyme regeneration revealed 95.8 g/L production titer within 12 h for variant N197Dldh, 2.05 times higher than using wild type. Our study indicated the importance of loop with residues involved in the catalytic proton transfer process, and the engineered LDH would be more suitable for (S)-2-HBA production.


Assuntos
Hidroxibutiratos/síntese química , L-Lactato Desidrogenase/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Catálise , Hidroxibutiratos/química , L-Lactato Desidrogenase/genética , Plasmodium falciparum/genética , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética
3.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4231-4242, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34984870

RESUMO

2-Hydroxybutyric acid (2-HBA) is an important intermediate for synthesizing biodegradable materials and various medicines. Chemically synthesized racemized 2-HBA requires deracemization to obtain optically pure enantiomers for industrial application. In this study, we designed a cascade biosynthesis system in Escherichia coli BL21 by coexpressing L-threonine deaminase (TD), NAD-dependent L-lactate dehydrogenase (LDH) and formate dehydrogenase (FDH) for production of optically pure (S)-2-HBA from bulk chemical L-threonine (L-Thr). To coordinate the production rate and the consumption rate of the intermediate 2-oxobutyric acid in the multi-enzyme cascade catalytic reactions, we explored promoter engineering to regulate the expression levels of TD and FDH, and developed a recombinant strain P21285FDH-T7V7827 with a tunable system to achieve a coordinated multi-enzyme expression. The recombinant strain P21285FDH-T7V7827 was able to efficiently produce (S)-2-HBA with the highest titer of 143 g/L and a molar yield of 97% achieved within 16 hours. This titer was approximately 1.83 times than that of the highest yield reported to date, showing great potential for industrial application. Our results indicated that constructing a multi-enzyme-coordinated expression system in a single cell significantly contributed to the biosynthesis of hydroxyl acids.


Assuntos
Formiato Desidrogenases , Hidroxibutiratos , Escherichia coli/genética , Treonina Desidratase
4.
Sheng Wu Gong Cheng Xue Bao ; 28(1): 65-75, 2012 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-22667110

RESUMO

In order to enhance gamma-aminobutyric acid production from L-glutamate efficiently, we amplified the key enzyme glutamate decarboxylase (GAD) encoding gene lpgad from the strain Lactobacillus plantarum GB 01-21 which was obtained by way of multi-mutagenesis and overexpressed it in E. coli BL21. Then we purified GAD by Ni-NTA affinity chromatography and characterized the enzyme to optimize the conditions of the whole-cell transformation. The results showed that the recombinant E. coli BL21 (pET-28a-lpgad) produced 8.53 U/mg GAD, which was increased by 3.24 fold compared with the GAD activity in L. plantarum. The optimum pH and temperature of the enzyme were pH 4.8 and 37 degrees C, respectively. At the same time, we found that Ca2+ and Mg2+ could increase the activity significantly. Based on this, we investigated gamma-aminobutyric acid transformation in 5 L fermentor under the optimum transformation conditions. Accordingly, the yield of gamma-aminobutyric acid was 204.5 g/L at 24 h when the 600 g L-glutamate was added and the mole conversion rate had reached 97.92%. The production of gamma-aminobutyric acid was improved by 42.5% compared with that under the unoptimized transformation conditions. This paved a way for the gamma-aminobutyric acid construction of the industrial applications.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato Descarboxilase/biossíntese , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/biossíntese , Clonagem Molecular , Escherichia coli/enzimologia , Glutamato Descarboxilase/genética , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...